发布于2023-10-11 阅读(0)
扫一扫,手机访问
目前,在自动驾驶的车辆中已经配备了多种信息采集传感器,如激光雷达、毫米波雷达以及相机传感器。从目前来看,多种传感器在自动驾驶的感知任务中显示出了巨大的发展前景。例如,相机采集到的2D图像信息捕获了丰富的语义特征,激光雷达采集到的点云数据可以为感知模型提供物体的准确位置信息和几何信息。通过充分利用不同传感器获取到的信息,可以减少自动驾驶感知过程中的不确定性因素的发生,同时提升感知模型的检测鲁棒性
今天介绍的是一篇来自旷视的自动驾驶感知论文,并且中稿了今年的ICCV2023 视觉顶会,该文章的主要特点是类似PETR这类End-to-End的BEV感知算法(不再需要利用NMS后处理操作过滤感知结果中的冗余框),同时又额外使用了激光雷达的点云信息来提高模型的感知性能,是一篇非常不错的自动驾驶感知方向的论文,文章的链接和官方开源仓库链接如下:
接下来,我们将对CMT感知模型的网络结构进行整体介绍,如下图所示:
通过整个算法框图可以看出,整个算法模型主要包括三个部分
在详细介绍了网络的整体结构之后,接下来将详细介绍上述提到的三个子部分
输入:2D Backbone输出的降采样16倍和32倍的特征图
输出:将下采样16倍和32倍的图像特征进行融合,获取降采样16倍的特征图
Tensor([bs * N, 1024, H / 16, W / 16])
Tensor([bs * N,2048,H / 16,W / 16])
需要重新写的内容是:张量([bs * N,256,H / 16,W / 16])
重写内容:使用ResNet-50网络来提取环视图像的特征
输出:输出下采样16倍和32倍的图像特征
输入张量:Tensor([bs * N,3,H,W])
输出张量:Tensor([bs * N,1024,H / 16,W / 16])
输出张量:``Tensor([bs * N,2048,H / 32,W / 32])`
需要进行改写的内容是:2D骨架提取图像特征
Neck(CEFPN)
根据以上介绍,位置编码的生成主要包括三个部分,分别是图像位置嵌入、点云位置嵌入和查询嵌入。下面将逐一介绍它们的生成过程
在BEV空间的网格坐标点利用pos2embed()
函数将二维的横纵坐标点变换到高维的特征空间
# 点云位置编码`bev_pos_embeds`的生成bev_pos_embeds = self.bev_embedding(pos2embed(self.coords_bev.to(device), num_pos_feats=self.hidden_dim))def coords_bev(self):x_size, y_size = (grid_size[0] // downsample_scale,grid_size[1] // downsample_scale)meshgrid = [[0, y_size - 1, y_size], [0, x_size - 1, x_size]]batch_y, batch_x = torch.meshgrid(*[torch.linspace(it[0], it[1], it[2]) for it in meshgrid])batch_x = (batch_x + 0.5) / x_sizebatch_y = (batch_y + 0.5) / y_sizecoord_base = torch.cat([batch_x[None], batch_y[None]], dim=0) # 生成BEV网格.coord_base = coord_base.view(2, -1).transpose(1, 0)return coord_base# shape: (x_size *y_size, 2)def pos2embed(pos, num_pos_feats=256, temperature=10000):scale = 2 * math.pipos = pos * scaledim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos.device)dim_t = temperature ** (2 * (dim_t // 2) / num_pos_feats)pos_x = pos[..., 0, None] / dim_tpos_y = pos[..., 1, None] / dim_tpos_x = torch.stack((pos_x[..., 0::2].sin(), pos_x[..., 1::2].cos()), dim=-1).flatten(-2)pos_y = torch.stack((pos_y[..., 0::2].sin(), pos_y[..., 1::2].cos()), dim=-1).flatten(-2)posemb = torch.cat((pos_y, pos_x), dim=-1)return posemb# 将二维的x,y坐标编码成512维的高维向量
通过使用多层感知器(MLP)网络进行空间转换,确保通道数量的对齐
查询嵌入
为了让Object Queries、Image Token以及Lidar Token之间计算相似性更加的准确,论文中的查询嵌入会利用Lidar和Camera生成位置编码的逻辑来生成;具体而言查询嵌入 = Image Position Embedding(同下面的rv_query_embeds) + Point Cloud Position Embedding(同下面的bev_query_embeds)。
bev_query_embeds生成逻辑
由于论文中的Object Query原本就是在BEV空间进行初始化的,所以直接复用Point Cloud Position Embedding生成逻辑中的位置编码和bev_embedding()函数即可,对应关键代码如下:
def _bev_query_embed(self, ref_points, img_metas):bev_embeds = self.bev_embedding(pos2embed(ref_points, num_pos_feats=self.hidden_dim))return bev_embeds# (bs, Num, 256)
rv_query_embeds生成逻辑需要被重新编写
在前面提到的内容中,Object Query是在BEV坐标系下的初始点。为了遵循Image Position Embedding的生成过程,论文中需要先将BEV坐标系下的3D空间点投影到图像坐标系下,然后再利用之前生成Image Position Embedding的处理逻辑,以确保生成过程的逻辑相同。以下是核心代码:
def _rv_query_embed(self, ref_points, img_metas):pad_h, pad_w = pad_shape# 由归一化坐标点映射回正常的roi range下的3D坐标点ref_points = ref_points * (pc_range[3:] - pc_range[:3]) + pc_range[:3]points = torch.cat([ref_points, ref_points.shape[:-1]], dim=-1)points = bda_mat.inverse().matmul(points)points = points.unsqueeze(1)points = sensor2ego_mats.inverse().matmul(points)points =intrin_mats.matmul(points)proj_points_clone = points.clone() # 选择有效的投影点z_mask = proj_points_clone[..., 2:3, :].detach() > 0proj_points_clone[..., :3, :] = points[..., :3, :] / (points[..., 2:3, :].detach() + z_mask * 1e-6 - (~z_mask) * 1e-6)proj_points_clone = ida_mats.matmul(proj_points_clone)proj_points_clone = proj_points_clone.squeeze(-1)mask = ((proj_points_clone[..., 0] < pad_w)& (proj_points_clone[..., 0] >= 0)& (proj_points_clone[..., 1] < pad_h)& (proj_points_clone[..., 1] >= 0))mask &= z_mask.view(*mask.shape)coords_d = (1 + torch.arange(depth_num).float() * (pc_range[4] - 1) / depth_num)projback_points = (ida_mats.inverse().matmul(proj_points_clone))projback_points = torch.einsum("bvnc, d -> bvndc", projback_points, coords_d)projback_points = torch.cat([projback_points[..., :3], projback_points.shape[:-1]], dim=-1)projback_points = (sensor2ego_mats.matmul(intrin_mats).matmul(projback_points))projback_points = (bda_mat@ projback_points)projback_points = (projback_points[..., :3] - pc_range[:3]) / (pc_range[3:] - self.pc_range[:3])rv_embeds = self.rv_embedding(projback_points)rv_embeds = (rv_embeds * mask).sum(dim=1)return rv_embeds
通过上述的变换,即完成了BEV空间坐标系下的点先投影到图像坐标系,再利用之前生成Image Position Embedding的处理逻辑生成rv_query_embeds的过程。
最后查询嵌入 = rv_query_embeds + bev_query_embeds
首先先放出来CMT和其他自动驾驶感知算法的比较实验,论文作者分别在nuScenes的test和val集上进行了比较,实验结果如下
接下来是CMT创新点的消融实验部分
首先,我们进行了一系列消融实验,来确定是否采用位置编码。通过实验结果发现,当同时采用图像和激光雷达的位置编码时,NDS和mAP指标实现了最佳效果。接下来,在消融实验的(c)和(f)部分,我们对点云主干网络的类型和体素大小进行了不同的尝试。而在(d)和(e)部分的消融实验中,我们则对相机主干网络的类型和输入分辨率的大小进行了不同的尝试。以上只是对实验内容的简要概括,如需了解更多详细的消融实验,请参阅原文
最后放一张CMT的感知结果在nuScenes数据集上可视化结果的展示,通过实验结果可以看出,CMT还是有较好的感知结果的。
目前,将各种模态融合在一起以提升模型的感知性能已经成为一个热门的研究方向(尤其是在自动驾驶汽车上,配备了多种传感器)。同时,CMT是一个完全端到端的感知算法,不需要额外的后处理步骤,并且在nuScenes数据集上具有最先进的精度。本文对这篇文章进行了详细介绍,希望对大家有所帮助
需要重写的内容是: 原文链接:https://mp.weixin.qq.com/s/Fx7dkv8f2ibkfO66-5hEXA
售后无忧
立即购买>office旗舰店
售后无忧
立即购买>office旗舰店
售后无忧
立即购买>office旗舰店
售后无忧
立即购买>office旗舰店