发布于2024-11-13 阅读(0)
扫一扫,手机访问
Python语言是目前最流行的编程语言之一,它在不同领域都有广泛的应用,尤其是在深度学习领域。深度学习是实现人工智能的一种方法,通过模拟人类神经系统,让机器能够自我学习和适应。在Python中,有许多强大的深度学习工具和框架,包括TensorFlow、PyTorch、Keras等,并且提供了许多常用的深度学习实例来帮助初学者快速上手。
一、TensorFlow
TensorFlow是Google开发的一款强大的深度学习框架。下面是一个基于TensorFlow的简单的神经网络实例,包括数据预处理、模型构建和训练等步骤。
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 读取数据 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 图片信息 image_size = 28 image_pixels = image_size * image_size # 标签信息 num_labels = 10
# Tensorflow输入图像占位符 x = tf.placeholder("float", shape=[None, image_pixels]) # Tensorflow输入标签占位符 y_ = tf.placeholder("float", shape=[None, num_labels]) # 模型参数 w = tf.Variable(tf.zeros([image_pixels, num_labels])) b = tf.Variable(tf.zeros([num_labels])) # 预测结果 y = tf.nn.softmax(tf.matmul(x, w) + b)
# 损失函数 cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) # 优化算法 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) # 正确率预测 correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) # TensorFlow Session sess = tf.InteractiveSession() tf.global_variables_initializer().run() # 迭代训练 for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) if i % 100 == 0: print("Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})) # 最终模型的准确率 print("Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
二、PyTorch
PyTorch是一个基于Python的科学计算库,专门处理深度学习任务。下面是一个使用PyTorch框架的卷积神经网络实例。
import torch import torchvision import torchvision.transforms as transforms # 图像处理 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) # 训练数据集 trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) # 测试数据集 testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) classes = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9')
import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net()
import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) for epoch in range(2): # 2个Epoch running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 2000 == 1999: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training')
三、Keras
Keras是一个高级神经网络API,可以快速构建和调试深度学习模型。下面是一个使用Keras构建的卷积神经网络实例。
import keras from keras.datasets import mnist # 获取数据 (x_train, y_train), (x_test, y_test) = mnist.load_data() # 数据处理 x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) input_shape = (28, 28, 1) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10)
from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) model.fit(x_train, y_train, batch_size=128, epochs=12, verbose=1, validation_data=(x_test, y_test)) score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1])
结论
以上三个深度学习实例是Python中的常见示例。TensorFlow、PyTorch和Keras都是强大的深度学习框架,它们的主要功能是简化深度神经网络的搭建和训练。这三个示例可以帮助初学者更好地理解深度学习的基本原理和使用方法,同时也可以作为进一步深入研究的起点。
售后无忧
立即购买>office旗舰店
售后无忧
立即购买>office旗舰店
售后无忧
立即购买>office旗舰店
售后无忧
立即购买>office旗舰店