商城首页欢迎来到中国正版软件门户

您的位置:首页 > 业界资讯 >MIT博士获第三届AAAI/ACM SIGAI博士论文奖,探索模型泛化的260多页论文

MIT博士获第三届AAAI/ACM SIGAI博士论文奖,探索模型泛化的260多页论文

  发布于2024-12-06 阅读(0)

扫一扫,手机访问

AAAI 2024 奖项陆续公布,继杰出论文奖后,今天博士论文奖也公布了。

这几天,第 38 届国际 AI 顶会 AAAI 2024 在加拿大温哥华会议中心举行。本届 AAAI 会议共有 10504 篇投稿,录取 2527 篇,录取率为 24.1%。

AAAI 官方已经公布杰出论文奖(Outstanding Paper Award),其中有三篇论文获奖,其中包括西安电子科技大学团队的《Reliable Conflictive Multi-view Learning》。值得一提的是,这次获奖的论文中也有华人学者的身影。

AAAI 2024宣布了第三届、2021年AAAI/ACM SIGAI博士论文奖的获奖者和获奖论文。本次获奖者是MIT的女博士Shibani Santurkar,她的获奖论文题为《超越准确性的机器学习:模型泛化的特征视角》。

哈佛大学博士 Bryan Wilder 的获奖论文《人口健康领域的人工智能:网络融合数据和算法》使他获得了本届博士论文奖的提名。

第三届AAAI/ACM SIGAI博士论文奖出炉,MIT博士260多页论文探索模型泛化

AAAI/ACM SIGAI 博士论文奖是由 AAAI 和 ACM SIGAI 联合设立的,旨在表彰和激励人工智能领域的杰出博士研究和论文。该奖项是每年举办的,获奖者将有机会在年度的 AAAI 会议上发表演讲,展示他们的研究成果。这一奖项的设立旨在推动人工智能领域的创新发展,激励年轻研究人员在该领域取得卓越成就。

据了解,第一届奖项由 MIT 博士吴佳俊(现为斯坦福助理教授)获得,获奖论文题目为《学习看物理世界》(Learning to See the Physical World)。

第二届奖项由 CMU 博士、 OpenAI 研究科学家 Noam Brown 摘得,获奖论文题目为《大型对抗性不完美信息博弈的均衡发现》(Equilibrium Finding for Large Adversarial Imperfect-Information Games)。

第三届AAAI/ACM SIGAI博士论文奖出炉,MIT博士260多页论文探索模型泛化

                                吴佳俊(左)、Noam Brown(右)。

2021 AAAI/ACM SIGAI 博士论文奖

今年获得该奖项的论文题目为「 Machine Learning Beyond Accuracy: A Features Perspective On Model Generalization」,作者是当时在 MIT 求学的计算机科学博士 Shibani Santurkar,Santurkar 现在为斯坦福大学计算机科学博士后。

第三届AAAI/ACM SIGAI博士论文奖出炉,MIT博士260多页论文探索模型泛化

论文地址:https://dspace.mit.edu/handle/1721.1/139920

论文摘要:由于机器学习(ML)在各种基准上的突出表现,已被很多研究者应用于解决现实世界问题。然而,越来越多的证据表明模型基准性能并不能完全反映全部情况。事实证明,现有的机器学习模型非常脆弱:最突出的问题是它们对对抗性示例输入扰动的敏感性。

本文重新审视对抗性示例,将它们用作了解当前模型的窗口,该研究为为什么出现这种敏感性提供了新的视角:这是模型依赖于可预测但脆弱的输入特征的直接后果。

研究结果表明,对抗性示例实际上反映了一个更深层次的问题:当前模型在基准测试上取得成功的机制,与人类所预期的基本不一致。这引发了一个问题:我们如何构建机器学习(ML)模型,使其不仅在开发时使用的基准测试上具有泛化性,而且还能在真实世界中得到泛化?

为了回答这个问题,该研究从特征视角(features perspective)检查机器学习流程,不仅关注模型预测的标签,还关注它们使用哪些特征来进行预测。因此,在论文的第二部分,研究者开发了一套工具来更好地理解:(i)模型学习了哪些特征,(ii)为什么学习这些特征,以及(iii)如何在训练或测试时修改学到的特征。这些工具使得用户在模型开发过程中进行关键设计选择,比如如何创建数据集,以及训练和评估模型。在这些洞见的基础上,论文随后提出了对机器学习流程的具体改进,以提高模型的泛化能力。

作者介绍

第三届AAAI/ACM SIGAI博士论文奖出炉,MIT博士260多页论文探索模型泛化

个人主页:https://shibanisanturkar.com/

Shibani Santurkar 现在为斯坦福大学计算机科学专业的博士后,与 Tatsu Hashimoto、Percy Liang 和 Tengyu Ma(马腾宇) 一起进行研究。在此之前,她在麻省理工学院获得了博士学位,师从 Aleksander Madry 和 Nir Shavit 。Shibani Santurkar 在印度理工学院孟买分校获得了电气工程学士和硕士学位。此前,她还在 Google Brain 和 Vicarious 实习。

在 Google Scholar 上,她的论文引用量近万。

第三届AAAI/ACM SIGAI博士论文奖出炉,MIT博士260多页论文探索模型泛化

博士论文奖提名

本届 AAAI/ACM SIGAI 博士论文提名奖获得者为哈佛大学博士 Bryan Wilder,现为 CMU 机器学习系助理教授。研究重心为高风险社会环境中实现公平、数据驱动决策的 AI,并整合机器学习、优化和因果推理方法。

在加入 CMU 之前,他曾是哈佛大学公共卫生学院和 CMU 的施密特科学研究员项目的博士后研究员。

第三届AAAI/ACM SIGAI博士论文奖出炉,MIT博士260多页论文探索模型泛化

论文标题:AI for Population Health: Melding Data and Algorithms on Networks

论文地址:https://dash.harvard.edu/handle/1/37370083

参考链接:https://aaai.org/about-aaai/aaai-awards/aaai-acm-sigai-doctoral-dissertation-award/

本文转载于:https://www.jiqizhixin.com/articles/2024-02-26-10 如有侵犯,请联系admin@zhengruan.com删除

热门关注