商城首页欢迎来到中国正版软件门户

您的位置:首页 > 业界资讯 >使用Ruby在本地运行开源AI模型以维护客户私密性

使用Ruby在本地运行开源AI模型以维护客户私密性

  发布于2024-12-18 阅读(0)

扫一扫,手机访问

译者 | 陈峻

审校 | 重楼

最近,我们实施了一个定制化的人工智能(AI)项目。鉴于甲方持有着非常敏感的客户信息,为了安全起见,我们不能将它们传递给OpenAI或其他专有模型。因此,我们在AWS虚拟机中下载并运行了一个开源的AI模型,使之完全处于我们的控制之下。同时,Rails应用可以在安全的环境中,对AI进行API调用。当然,如果不必考虑安全问题,我们更倾向于直接与OpenAI合作。

为了保护客户隐私,使用Ruby在本地运行开源AI模型

下面,我将和大家分享如何在本地下载开源的AI模型,让它运行起来,以及如何针对其运行Ruby脚本。

为什么要定制?

这个项目的动机很简单:数据安全。在处理敏感的客户信息时,最可靠的做法通常是在公司内部进行。因此,我们需要定制化的AI模型,在提供更高级别的安全控制和隐私保护方面发挥作用。

开源模式

在过去的6个月里,市场上出现了诸如:MistralMixtralLama等大量开源的AI模型。它们虽然没有GPT-4那么强大,但是其中不少模型的性能已经超过了GPT-3.5,而且随着时间的推移,它们会越来越强。当然,该选用哪种模型,则完全取决于您的处理能力和需要实现的目标。

由于我们将在本地运行AI模型,因此选择了大小约为4GBMistral。它在大多数指标上都优于GPT-3.5。尽管Mixtral的性能优于Mistral,但它是一个庞大的模型,至少需要48GB内存才能运行。

参数

在谈论大语言模型(LLM)时,我们往往会考虑提到它们的参数大小。在此,我们将在本地运行的Mistral模型是一个70亿参数的模型(当然,Mixtral拥有700亿个参数,而GPT-3.5大约有1750亿个参数)。

通常,大型语言模型使用基于神经网络的技术。神经网络是由神经元组成的,每个神经元与下一层的所有其他神经元相连。

为了保护客户隐私,使用Ruby在本地运行开源AI模型

如上图所示,每个连接都有一个权重,通常用百分比表示。每个神经元还有一个偏差(bias),当数据通过某个节点时,偏差会对数据进行修正。

神经网络的目的是要“学到”一种先进的算法、一种模式匹配的算法。通过在大量文本中接受训练,它将逐渐学会预测文本模式的能力,进而对我们给出的提示做出有意义的回应。简单而言,参数就是模型中权重和偏差的数量。它可以让我们了解神经网络中有多少个神经元。例如,对于一个70亿参数的模型来说,大约有100层,每层都有数千个神经元。

在本地运行模型

要在本地运行开源模型,首先必须下载相关应用。虽然市场上有多种选择,但是我发现最简单,也便于在英特尔Mac上运行的是Ollama

虽然Ollama目前只能在MacLinux上运行,不过它未来还能运行在Windows上。当然,您可以在Windows上使用WSL(Windows Subsystem for Linux)来运行Linux shell

Ollama不但允许您下载并运行各种开源模型,而且会在本地端口上打开模型,让您能够通过Ruby代码进行API调用。这便方便了Ruby开发者编写能够与本地模型相集成的Ruby应用。

获取Ollama

由于Ollama主要基于命令行,因此在MacLinux系统上安装Ollama非常简单。您只需通过链接https://olama.ai/下载Ollama,花5分钟左右时间安装软件包,再运行模型即可。

为了保护客户隐私,使用Ruby在本地运行开源AI模型

安装首个模型

在设置并运行Ollama之后,您将在浏览器的任务栏中看到Ollama图标。这意味着它正在后台运行,并可运行您的模型。为了下载模型,您可以打开终端并运行如下命令:

ollama run mistral

由于Mistral约有4GB大小,因此您需要花一段时间完成下载。下载完成后,它将自动打开Ollama提示符,以便您与Mistral进行交互和通信。

为了保护客户隐私,使用Ruby在本地运行开源AI模型

下一次您再通过Ollama运行mistral时,便可直接运行相应的模型了。

定制模型

类似我们在OpenAI中创建自定义的GPT,通过Ollama,您可以对基础模型进行定制。在此,我们可以简单地创建一个自定义的模型。更多详细案例,请参考Ollama的联机文档。

首先,您可以创建一个Modelfile(模型文件),并在其中添加如下文本:

FROM mistral# Set the temperature set the randomness or creativity of the responsePARAMETER temperature 0.3# Set the system messageSYSTEM ”””You are an excerpt Ruby developer. You will be asked questions about the Ruby Programminglanguage. You will provide an explanation along with code examples.”””

上面出现的系统消息是AI模型做出特定反应的基础。

接着,您可以在终端上运行如下命令,以创建新的模型:

ollama create <model-name> -f './Modelfile

在我们的项目案例中,我将该模型命名为Ruby

ollama create ruby -f './Modelfile'

同时,您可以使用如下命令罗列显示自己的现有模型:

ollama list

为了保护客户隐私,使用Ruby在本地运行开源AI模型

至此您可以用如下命令运行自定义的模型了:

Ollama run ruby

与Ruby集成

虽然Ollama尚没有专用的gem,但是Ruby开发人员可以使用基本的HTTP请求方法与模型进行交互。在后台运行的Ollama可以通过11434端口打开模型,因此您可以通过“http://localhost:11434”访问它。此外,OllamaAPI的文档也为聊天对话和创建嵌入等基本命令提供了不同的端点。

在本项目案例中,我们希望使用/api/chat端点向AI模型发送提示。下图展示了一些与模型交互的基本Ruby代码:

为了保护客户隐私,使用Ruby在本地运行开源AI模型

上述Ruby代码段的功能包括:

  1. 通过“net/http”、“uri”和“json”三个库,分别执行HTTP请求、解析URI和处理JSON数据。
  2. 创建包含API端点地址(http://localhost:11434/api/chat)的URI对象。
  3. 使用以URI为参数的Net::HTTP::Post.new方法,创建新的HTTP POST请求。
  4. 请求的正文被设置为一个代表了哈希值的JSON字符串。该哈希值包含了三个键:“模型”、“消息”和“流”。其中,
  1. 模型键被设置为“ruby”,也就是我们的模型;
  2. 消息键被设置为一个数组,其中包含了代表用户消息的单个哈希值;
  3. 而流键被设置为false
  4. 系统引导模型该如何回应信息。我们已经在Modelfile中予以了设置。
  5. 用户信息是我们的标准提示。
  6. 模型会以辅助信息作出回应。
  1. 消息哈希遵循与AI模型交叉的模式。它带有一个角色和内容。此处的角色可以是系统、用户和辅助。其中,
  2. HTTP请求使用Net::HTTP.start方法被发送。该方法会打开与指定主机名和端口的网络连接,然后发送请求。连接的读取超时时间被设置为120秒,毕竟我运行的是2019款英特尔Mac,所以响应速度可能有点慢。而在相应的AWS服务器上运行时,这将不是问题。
  3. 服务器的响应被存储在“response”变量中。

案例小结

如上所述,运行本地AI模型的真正价值体现在,协助持有敏感数据的公司,处理电子邮件或文档等非结构化的数据,并提取有价值的结构化信息。在我们参加的项目案例中,我们对客户关系管理(CRM)系统中的所有客户信息进行了模型培训。据此,用户可以询问其任何有关客户的问题,而无需翻阅数百份记录。

译者介绍

陈峻(Julian Chen),51CTO社区编辑,具有十多年的IT项目实施经验,善于对内外部资源与风险实施管控,专注传播网络与信息安全知识与经验。

原文标题:How To Run Open-Source AI Models Locally With Ruby,作者:Kane Hooper

本文转载于:https://www.51cto.com/article/783878.html 如有侵犯,请联系admin@zhengruan.com删除

最新发布

相关推荐

热门关注